

Power Quality Monitoring in Emerging Power Systems using Adaptive and Intelligent Techniques

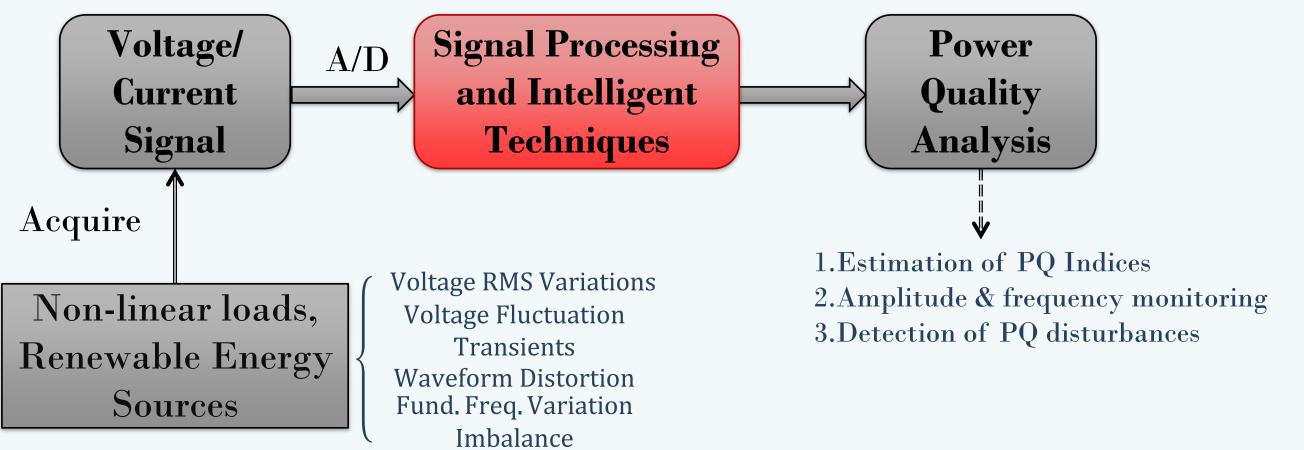
Dr. Karthik Thirumala, Ph.D. Thesis supervisors : Dr. Amod C. Umarikar and Dr. Trapti Jain Discipline of Electrical Engineering, Indian Institute of Technology Indore, India Website: http://poweriiti.weebly.com/ Email : karthikt2707@gmail.com

Power Systems Atoard 2018

Doctoral Category

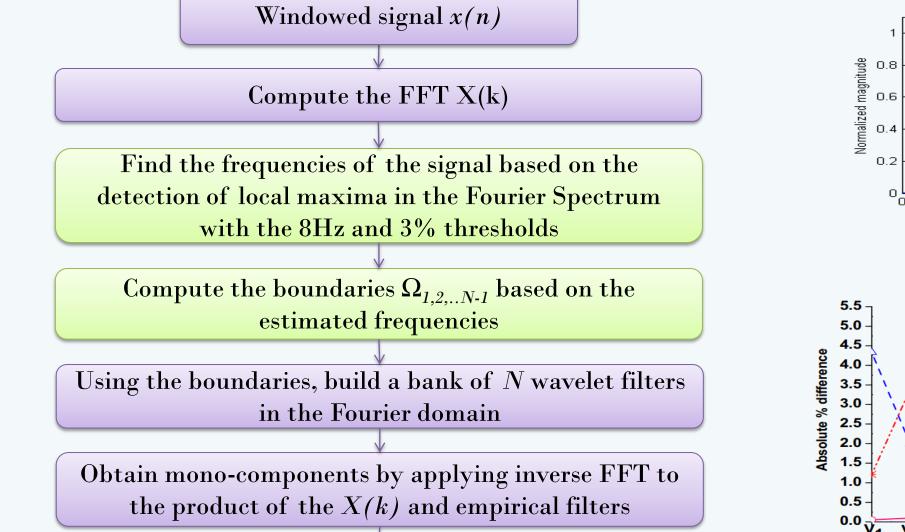
Motivation

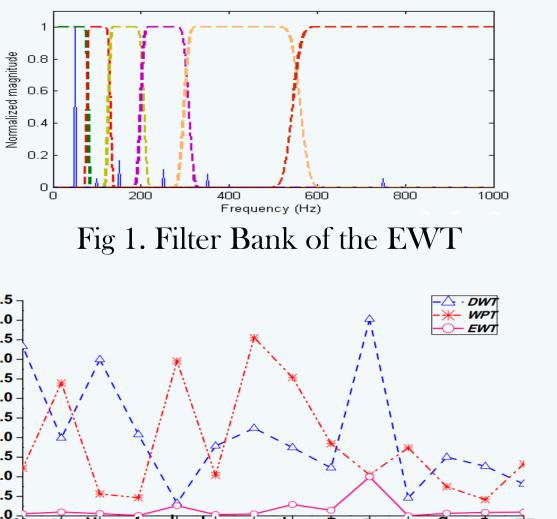
- The high proliferation of nonlinear loads, power electronic-based devices and renewable energy sources in the recent years are deteriorating the quality of power supply to quite severe levels.
- The PQ monitoring helps in the understanding of PQ disturbances, their causes and their impact on the power system and the end-user equipment.
- The analysis of time-varying practical voltage and current signals requires an adaptive tool to analyze the disturbances accurately and identify the transitions.


Objectives

In view of the importance of the accurate and fast PQ monitoring, and limitations of the existing techniques, the main objectives of this work are:

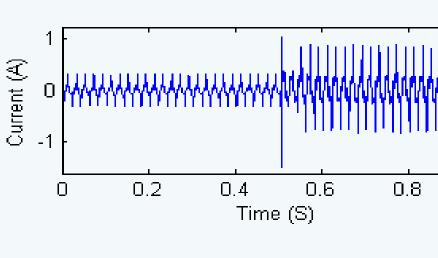
Power Quality Monitoring Outline


To define, measure, quantify & interpret the disturbances occurring in the system.


- \blacktriangleright To accurately estimate the PQ indices of distorted signals containing harmonics and interharmonics with less computational complexity.
- To analyze the time-varying signals having disturbances and visualize their instantaneous amplitude and frequency accurately.
- \succ To extract the actual fundamental frequency component of any distorted voltage/current signal for the computation of time-varying PQ indices.
- To develop a novel online automatic recognition approach for accurate classification of single and combined disturbances under noisy conditions.

1. Estimation of PQ indices using EWT

Application of a modified EWT for an accurate estimation of 1-Ø & 3-Ø PQ indices.



2. Adaptive Filtering for continuous monitoring

Proposes an improved two-stage filtering technique utilizing a divide-to-conquer principle based frequency estimation and Hanning window.

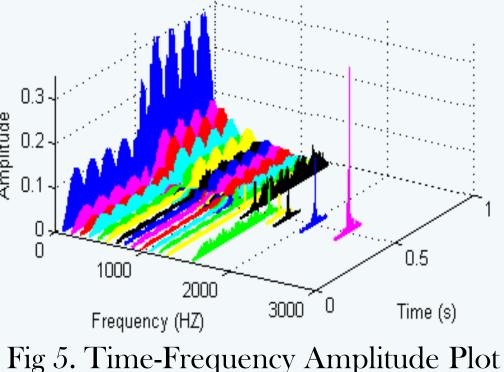



Fig 3. Setup for Acquiring Signal

Fig 4. Measured Transient Signal

GEWT based Features for multiple PODs

V_H V_{rms} I₁ I_H I_{rms} V_{thd} I_{thd} P₁ P_H P S₁ PQ Indices Fig 2. % difference of PQ indices for 3 Approaches

3.GEWT to visualize time-varying PQ indices

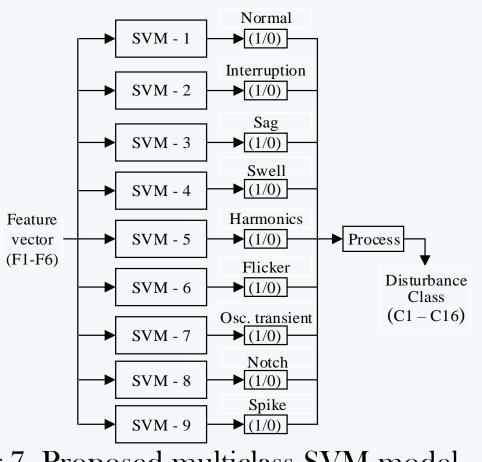
- This work proposes a Generalized Empirical Wavelet Transform (GEWT) tailored for assessment of all sort of PQ disturbances.
- \succ The main focus is to accurately extract the fundamental frequency component for tracking of instantaneous PQ indices.

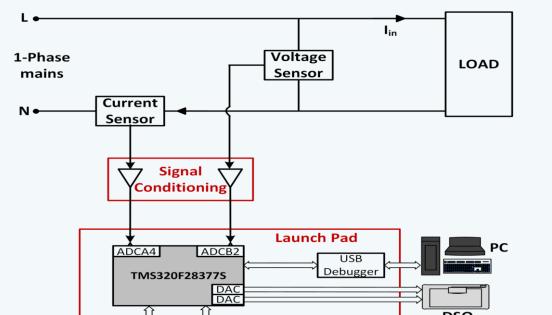
l signal	MM	\sim	\sim	$\sqrt{\Lambda}$	
0	0.05	0.1	0.15	0.2	
1		(a)			
1 ≥ 0.5 ≚ 0.5				GEWT FST FFT	
0 L 0	0.05	0.1	0.15	0.2	
2 г		(b)			
₹ 1 0				GEWT FST FFT	
Ŭ	0.05	0.1	0.15	0.2	

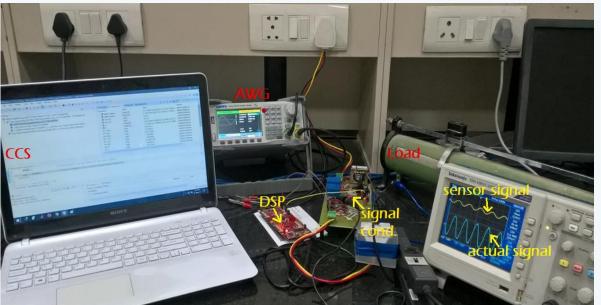
Fig 6. PQ indices of a recorded voltage sag signal

This work utilizes the GEWT for feature extraction and SVM for accurate classification of the most frequent 15 disturbances with only six features.

- \succ The combined disturbance, which contains two or more single disturbances simultaneously will exhibit characteristics of all its individual disturbances.
- The proposed SVM model with RBF kernel has the highest classification accuracy of 97.44%.
- \blacktriangleright The overall classification time is approx. 50 ms.
- \succ Tested on 6 real disturbance signals.




Fig 7. Proposed multiclass SVM model


5. Detection of PQDs using TQWT & MSVM

- The proposed approach first investigates the presence of lowfrequency interharmonics and then tunes the wavelet for decomposition of signal into fundamental and distortion components.
- \succ The overall accuracy of the dual MSVM and RBF kernel is found to be 07986%

Signals	TF1	TF2	TF3	TF4	TF5	Class detected
Transient	0.573	0.371	1.054	0.485	1.022	Transient
Current harmonic	0.037	0.962	0.983	0.657	0.700	Harmonics
Current harmonic	0.003	0.135	0.143	0.927	0.939	Harmonics
Current interharmonic	0.346	2.190	2.490	0.470	0.519	Harmonics
Voltage sag	0.431	0.032	0.068	0.177	0.975	Sag
Voltage normal	0.000	0.015	0.020	0.996	0.998	Normal
Voltage harmonic	0.010	0.137	0.144	0.991	1.015	Harmonics
Voltage swell	0.130	0.017	0.072	0.984	1.136	Swell

- 6. DSP Implementation of the EWT for PQ
- \succ To investigate the practical applicability of the modified EWT, it is implemented on a DSP and verified on practical 1-Ø voltage and current signals.

<i>31.</i> 200 %0.	
--------------------	--

The mean classification time is 80 ms.

+ transient						
Voltage sag + transient	0.615	0.053	0.352	0.247	1.003	Sag + transient

Fig 8. Schematic of DSP based analyzer

Fig 9. Experimental setup of PQ analyzer

Conclusions

- > Developed adaptive and intelligent techniques for PQ monitoring with an objective of attaining high accuracy with less computational complexity.
- Successfully utilized the potentials of the EWT for PQ analysis.
- > The GEWT shows excellent performance in case of PQ disturbances due to its complete adaptiveness.
- \triangleright Both the two new multiclass SVM classification models are suitable for quick detection of 15 PQ disturbances with an overall accuracy of 97 %.
- Finally, the practicality of the EWT-based PQ measurement is investigated and verified on the TMS320F28377S DSP.

Journal Papers out of The Thesis Work:

- K. Thirumala, A. C. Umarikar, and T. Jain, "Estimation of Single-phase and Three-phase Power Quality Indices using Empirical Wavelet Transform," IEEE Trans. Power Delivery, vol. 30, no. 1, pp. 445-454, February 2015.
- K. Thirumala, Shantanu, T. Jain, and A. C. Umarikar, "Visualizing Time-Varying Power Quality Indices using Generalized Empirical Wavelet Transform," Electric Power Systems Research, vol. 143, pp. 99-109, October 2016.
- K. Thirumala, M. S. Prasad, T. Jain, and A. C. Umarikar, "Tunable Q Wavelet Transform and Dual Multi-class SVM for Online Automatic Detection of Power Quality Disturbances," IEEE Trans. Smart Grid, November 2016 (Early access).
- K. Thirumala, A. C. Umarikar, and T. Jain, "An Improved Adaptive Filtering Approach for Power Quality Analysis of Time-Varying Waveforms," Measurement, 2017 (Revision submitted).